Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Near-band-gap CuPt-order-induced birefringence in Al0.48Ga0.52InP2

Identifieur interne : 013865 ( Main/Repository ); précédent : 013864; suivant : 013866

Near-band-gap CuPt-order-induced birefringence in Al0.48Ga0.52InP2

Auteurs : RBID : Pascal:00-0020806

Descripteurs français

English descriptors

Abstract

The order-induced birefringence in the near-band-gap spectral range (0.75 to 2.5 eV), and its dependence on the degree of ordering η is reported for Al0.48Ga0.52InP2. Transmission and reflection generalized variable angle spectroscopic ellipsometry, dark-field spectroscopy, and cross-polarized reflectance difference spectroscopy (CRDS) are used to determine precisely the room-temperature dielectric functions for polarization parallel and perpendicular to the ordering direction of a series of spontaneously CuPt-ordered samples grown by metal-organic vapor-phase epitaxy. The CRDS technique is introduced as an approach to sense extremely weak anisotropy at oblique angles of incidence. The observed order birefringence is treated as chemical-stress induced piezobirefringence. The dielectric function model for piezobirefringence in zinc-blende compounds, and selection rules for the transitions from the Γ4,5v6(1)v6(2)v valence band states to the Γ6c conduction band states, allow excellent modeling of the order birefringence in the near-band-gap spectral region. Thus, explicit treatment of the transition-matrix k dependence, as recently suggested for ordered GaInP2 or GaInAs2, can be avoided. The transition energies, strengths, and broadening parameters for the three zone-center transitions are obtained from analysis of the sample dielectric function tensor. All parameters in the quasicubic perturbation model can be fitted. We find, in excellent agreement with recent theoretical predictions, that the spin-orbit splitting parameter of 76 meV is nearly ordering independent, and that the ratio of the crystal-field splitting to the band-gap reduction for the perfectly ordered alloy amounts to 0.62. The band gap of the disordered compound is extrapolated to 2.195 eV.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:00-0020806

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Near-band-gap CuPt-order-induced birefringence in Al
<sub>0.48</sub>
Ga
<sub>0.52</sub>
InP
<sub>2</sub>
</title>
<author>
<name sortKey="Schubert, Mathias" uniqKey="Schubert M">Mathias Schubert</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Center for Microelectronic and Optical Materials Research and Department of Electrical Engineering, University of Nebraska, Lincoln, Nebraska 68588</s1>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Nebraska</region>
</placeName>
<wicri:cityArea>Center for Microelectronic and Optical Materials Research and Department of Electrical Engineering, University of Nebraska, Lincoln</wicri:cityArea>
</affiliation>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Semiconductor Physics Group, Faculty of Physics and Geoscience, University of Leipzig, Linnestrasse 5, D-04103 Leipzig, Germany</s1>
<sZ>1 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Semiconductor Physics Group, Faculty of Physics and Geoscience, University of Leipzig, Linnestrasse 5, D-04103 Leipzig</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Leipzig</region>
<settlement type="city">Leipzig</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<inist:fA14 i1="05">
<s1>Center for Microelectronic and Optical Materials Research and Department of Electrical Engineering, University of Nebraska, Lincoln, Nebraska 68588</s1>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Nebraska</region>
</placeName>
<wicri:cityArea>Center for Microelectronic and Optical Materials Research and Department of Electrical Engineering, University of Nebraska, Lincoln</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hofmann, Tino" uniqKey="Hofmann T">Tino Hofmann</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>Semiconductor Physics Group, Faculty of Physics and Geoscience, University of Leipzig, Linnestrasse 5, D-04103 Leipzig, Germany</s1>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Semiconductor Physics Group, Faculty of Physics and Geoscience, University of Leipzig, Linnestrasse 5, D-04103 Leipzig</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Leipzig</region>
<settlement type="city">Leipzig</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rheinlander, Bernd" uniqKey="Rheinlander B">Bernd Rheinlander</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>Semiconductor Physics Group, Faculty of Physics and Geoscience, University of Leipzig, Linnestrasse 5, D-04103 Leipzig, Germany</s1>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Semiconductor Physics Group, Faculty of Physics and Geoscience, University of Leipzig, Linnestrasse 5, D-04103 Leipzig</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Leipzig</region>
<settlement type="city">Leipzig</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pietzonka, Ines" uniqKey="Pietzonka I">Ines Pietzonka</name>
<affiliation wicri:level="3">
<inist:fA14 i1="04">
<s1>Department of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Linnestrasse 3-5, D-04103 Leipzig, Germany</s1>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Linnestrasse 3-5, D-04103 Leipzig</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Leipzig</region>
<settlement type="city">Leipzig</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sass, Torsten" uniqKey="Sass T">Torsten Sass</name>
<affiliation wicri:level="3">
<inist:fA14 i1="04">
<s1>Department of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Linnestrasse 3-5, D-04103 Leipzig, Germany</s1>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Linnestrasse 3-5, D-04103 Leipzig</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Leipzig</region>
<settlement type="city">Leipzig</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gottschalch, Volker" uniqKey="Gottschalch V">Volker Gottschalch</name>
<affiliation wicri:level="3">
<inist:fA14 i1="04">
<s1>Department of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Linnestrasse 3-5, D-04103 Leipzig, Germany</s1>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Linnestrasse 3-5, D-04103 Leipzig</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Leipzig</region>
<settlement type="city">Leipzig</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Woollam, John A" uniqKey="Woollam J">John A. Woollam</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Center for Microelectronic and Optical Materials Research and Department of Electrical Engineering, University of Nebraska, Lincoln, Nebraska 68588</s1>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Nebraska</region>
</placeName>
<wicri:cityArea>Center for Microelectronic and Optical Materials Research and Department of Electrical Engineering, University of Nebraska, Lincoln</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">00-0020806</idno>
<date when="1999-12-15">1999-12-15</date>
<idno type="stanalyst">PASCAL 00-0020806 AIP</idno>
<idno type="RBID">Pascal:00-0020806</idno>
<idno type="wicri:Area/Main/Corpus">013E65</idno>
<idno type="wicri:Area/Main/Repository">013865</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0163-1829</idno>
<title level="j" type="abbreviated">Phys. rev., B, Condens. matter</title>
<title level="j" type="main">Physical review. B, Condensed matter</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium compounds</term>
<term>Birefringence</term>
<term>Crystal field interactions</term>
<term>Dielectric function</term>
<term>Ellipsometry</term>
<term>Energy gap</term>
<term>Experimental study</term>
<term>Gallium compounds</term>
<term>Indium compounds</term>
<term>Piezo-optical effects</term>
<term>Reflectivity</term>
<term>Semiconductor epitaxial layers</term>
<term>Spin-orbit interactions</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7820F</term>
<term>7155E</term>
<term>7866F</term>
<term>Etude expérimentale</term>
<term>Aluminium composé</term>
<term>Gallium composé</term>
<term>Indium composé</term>
<term>Couche épitaxique semiconductrice</term>
<term>Ellipsométrie</term>
<term>Fonction diélectrique</term>
<term>Facteur réflexion</term>
<term>Biréfringence</term>
<term>Effet piézooptique</term>
<term>Bande interdite</term>
<term>Interaction champ cristallin</term>
<term>Interaction spin orbite</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The order-induced birefringence in the near-band-gap spectral range (0.75 to 2.5 eV), and its dependence on the degree of ordering η is reported for Al
<sub>0.48</sub>
Ga
<sub>0.52</sub>
InP
<sub>2</sub>
. Transmission and reflection generalized variable angle spectroscopic ellipsometry, dark-field spectroscopy, and cross-polarized reflectance difference spectroscopy (CRDS) are used to determine precisely the room-temperature dielectric functions for polarization parallel and perpendicular to the ordering direction of a series of spontaneously CuPt-ordered samples grown by metal-organic vapor-phase epitaxy. The CRDS technique is introduced as an approach to sense extremely weak anisotropy at oblique angles of incidence. The observed order birefringence is treated as chemical-stress induced piezobirefringence. The dielectric function model for piezobirefringence in zinc-blende compounds, and selection rules for the transitions from the Γ
<sub>4,5v</sub>
<sub>6(1)v</sub>
<sub>6(2)v</sub>
valence band states to the Γ
<sub>6c</sub>
conduction band states, allow excellent modeling of the order birefringence in the near-band-gap spectral region. Thus, explicit treatment of the transition-matrix k dependence, as recently suggested for ordered GaInP
<sub>2</sub>
or GaInAs
<sub>2</sub>
, can be avoided. The transition energies, strengths, and broadening parameters for the three zone-center transitions are obtained from analysis of the sample dielectric function tensor. All parameters in the quasicubic perturbation model can be fitted. We find, in excellent agreement with recent theoretical predictions, that the spin-orbit splitting parameter of 76 meV is nearly ordering independent, and that the ratio of the crystal-field splitting to the band-gap reduction for the perfectly ordered alloy amounts to 0.62. The band gap of the disordered compound is extrapolated to 2.195 eV.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0163-1829</s0>
</fA01>
<fA02 i1="01">
<s0>PRBMDO</s0>
</fA02>
<fA03 i2="1">
<s0>Phys. rev., B, Condens. matter</s0>
</fA03>
<fA05>
<s2>60</s2>
</fA05>
<fA06>
<s2>24</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Near-band-gap CuPt-order-induced birefringence in Al
<sub>0.48</sub>
Ga
<sub>0.52</sub>
InP
<sub>2</sub>
</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SCHUBERT (Mathias)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HOFMANN (Tino)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>RHEINLANDER (Bernd)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>PIETZONKA (Ines)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SASS (Torsten)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>GOTTSCHALCH (Volker)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>WOOLLAM (John A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Center for Microelectronic and Optical Materials Research and Department of Electrical Engineering, University of Nebraska, Lincoln, Nebraska 68588</s1>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Semiconductor Physics Group, Faculty of Physics and Geoscience, University of Leipzig, Linnestrasse 5, D-04103 Leipzig, Germany</s1>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Semiconductor Physics Group, Faculty of Physics and Geoscience, University of Leipzig, Linnestrasse 5, D-04103 Leipzig, Germany</s1>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Linnestrasse 3-5, D-04103 Leipzig, Germany</s1>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Center for Microelectronic and Optical Materials Research and Department of Electrical Engineering, University of Nebraska, Lincoln, Nebraska 68588</s1>
</fA14>
<fA20>
<s1>16618-16634</s1>
</fA20>
<fA21>
<s1>1999-12-15</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>144 B</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2000 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>00-0020806</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physical review. B, Condensed matter</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The order-induced birefringence in the near-band-gap spectral range (0.75 to 2.5 eV), and its dependence on the degree of ordering η is reported for Al
<sub>0.48</sub>
Ga
<sub>0.52</sub>
InP
<sub>2</sub>
. Transmission and reflection generalized variable angle spectroscopic ellipsometry, dark-field spectroscopy, and cross-polarized reflectance difference spectroscopy (CRDS) are used to determine precisely the room-temperature dielectric functions for polarization parallel and perpendicular to the ordering direction of a series of spontaneously CuPt-ordered samples grown by metal-organic vapor-phase epitaxy. The CRDS technique is introduced as an approach to sense extremely weak anisotropy at oblique angles of incidence. The observed order birefringence is treated as chemical-stress induced piezobirefringence. The dielectric function model for piezobirefringence in zinc-blende compounds, and selection rules for the transitions from the Γ
<sub>4,5v</sub>
<sub>6(1)v</sub>
<sub>6(2)v</sub>
valence band states to the Γ
<sub>6c</sub>
conduction band states, allow excellent modeling of the order birefringence in the near-band-gap spectral region. Thus, explicit treatment of the transition-matrix k dependence, as recently suggested for ordered GaInP
<sub>2</sub>
or GaInAs
<sub>2</sub>
, can be avoided. The transition energies, strengths, and broadening parameters for the three zone-center transitions are obtained from analysis of the sample dielectric function tensor. All parameters in the quasicubic perturbation model can be fitted. We find, in excellent agreement with recent theoretical predictions, that the spin-orbit splitting parameter of 76 meV is nearly ordering independent, and that the ratio of the crystal-field splitting to the band-gap reduction for the perfectly ordered alloy amounts to 0.62. The band gap of the disordered compound is extrapolated to 2.195 eV.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H20F</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70A55E</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H66F</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7820F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7155E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7866F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Aluminium composé</s0>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Aluminium compounds</s0>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Gallium composé</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Gallium compounds</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Couche épitaxique semiconductrice</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Semiconductor epitaxial layers</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Ellipsométrie</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Ellipsometry</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Fonction diélectrique</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Dielectric function</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Facteur réflexion</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Reflectivity</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Biréfringence</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Birefringence</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Effet piézooptique</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Piezo-optical effects</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Bande interdite</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Energy gap</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Interaction champ cristallin</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Crystal field interactions</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Interaction spin orbite</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Spin-orbit interactions</s0>
</fC03>
<fN21>
<s1>010</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0001M001093</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 013865 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 013865 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:00-0020806
   |texte=   Near-band-gap CuPt-order-induced birefringence in Al0.48Ga0.52InP2
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024